竖向承重网架墙体的稳定计算

胥传喜 丁晓唐 倪 军

张光富

(河海大学土木工程学院 南京 210098) (长江水利委员会设计院 武汉 430010)

摘 要 着重研究了竖向承重网架墙体的整体稳定,采用拟夹层板法,将网架墙体比拟为受纵横 向荷载共同作用的平板,推出了拟夹层板的压曲方程;引入边界条件,求出了网架墙体的临界荷 载:经计算分析得出了一些有价值的结论.

关键词 整体网架结构:网架墙体:拟夹层板法:压曲:临界荷载

中图号 TU356; TU312.1

问题的提出 1

平板网架结构在屋盖结构中的应用已相当普遍,在楼层结构中也已有应用,将平板网架用 干竖向墙体的目前尚不多见, 应用于纽约贾维茨展览和会议中心结构中的,可以说是较为成功 的典范, 国内在张家港钢厂的炼钢连铸车间中采用了高度 33.6 m 和 24.38 m 的竖向网架结 构,该工程的侧墙网架没有直接落地,而是挂在厂房框架柱上,同时,竖向网架也不承受屋盖部 分传来的荷载.

某大型水利工程升船机机房长 ×宽 ×净高为 120 m ×60 m ×28 m,位于 150 m 高的 4 个钢 筋混凝土塔柱顶部平台上,每个塔柱的平面尺寸为 53.2 m ×16 m."双日字"型,壁厚 1 m.塔柱 顶部平台钢筋混凝土厚 2.5 m,上下游塔柱间净距 13.6 m,左右岸塔柱净距 25 m,4 个塔柱平台 以钢筋混凝土梁板体系连成一整体, 经研究,提出了一个机房屋盖及四面墙体均由平板网架组 成的整体网架方案,屋盖网架与墙体网架通过节点连成一体,支座降落到升船机平台上,因此, 本方案中、墙体部分的竖向网架除承受网架自重及附设的压型钢板等重量外、还直接承受屋盖 传来的荷载、竖向地震作用及水平风载等,由于墙体网架高度较大(H = 30 m),且受纵横向荷 载共同作用以及柱顶平台布置的限制,网架墙体的厚度不能太大,因而墙体网架的稳定性问题 值得研究, 基于这样的工程背景, 并考虑问题的一般性, 本文将竖向承重网架墙体比拟为受纵 横向荷载共同作用的平板,采用拟夹层板法分析其稳定性.

计算模型及基本假定

2.1 计算模型

采用连续化计算模型,如图 1.

收稿日期:1997 - 11 - 18

第一作者简介:胥传喜 男 副教授 结构工程专业 主要从事空间结构及结构振动控制研究 已发表《张力膜结构 的非线性有限元分析》《隔震技术及其在空间网格结构中的应用》等 10 余篇论文

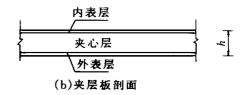


图 1 墙体网架计算模型

2.2 基本假定

- a. 将墙体网架的内侧杆件(相当于下弦杆) 作为内表层,外侧杆件(相当于上弦杆)作为外表 层,内外表层只承受层内面力;内、外表层的间距 等于墙体网架的厚度 h;
- b. 将腹杆折算成厚度为 h 的夹心层, 只承受横向剪力,
- c. 垂直墙面的直线段在变形后仍为直线, 但不一定垂直于墙面.

基于这些假定,以外墙面作参考面建立图 2 所示的坐标系.

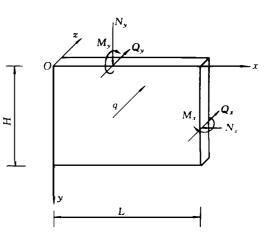


图 2 夹层板墙体的坐标系

3 夹层板的压曲方程

3.1 基本方程

a. 几何方程

$$\begin{cases} I = I & x & y J^{T} = I - \frac{\partial}{\partial x} & -\frac{\partial}{\partial y} J^{T} \\ I = I & x & y J^{T} = I \frac{\partial}{\partial x} - x & \frac{\partial}{\partial y} - y J^{T} \end{cases}$$

$$(1)$$

b. 物理方程

$$\{Q\} = [Q_x \quad Q_y]^T = [C_a]\{\}$$

$$\{\} = [x \quad y]^T = [D]\{\}$$

$$H$$

$$(2)$$

其中

型及
$$\begin{bmatrix} C_a \end{bmatrix}_{\stackrel{\frown}{s}}, \begin{bmatrix} C_x & 0 \\ 0 & C_y \end{bmatrix} \qquad \begin{bmatrix} D \end{bmatrix} = \begin{bmatrix} D_x & 0 \\ 0 & D_y \end{bmatrix}$$
 (3)

式中 C_x , C_y ——夹心层在 yz, xz 面上的剪切刚度系数; D_x , D_y ——夹层板在 x, y 方向的抗 弯刚度系数.

拟夹层板墙体表层的平面刚度,可由杆系的刚度换算求得;抗弯刚度由表层的平面刚度求

得. 而夹心层的抗剪刚度则可由腹杆的刚度通过虚功原理等效求得*.

c. 平衡方程

受纵横向荷载共同作用的夹层板的平衡方程为

$$\frac{\partial M_{x}}{\partial x} - Q_{x} = 0$$

$$\frac{\partial M_{y}}{\partial y} - Q_{y} = 0$$

$$q + \frac{\partial Q_{x}}{\partial x} + \frac{\partial Q_{y}}{\partial y} + N_{x} \frac{\partial^{2}}{\partial x^{2}} + 2N_{xy} \frac{\partial^{2}}{\partial x \partial y} + N_{y} \frac{\partial^{2}}{\partial y^{2}} = 0$$
(4)

3.2 压曲方程

引进新的位移函数 ,使

$$x = L_1 \qquad \qquad y = L_2 \qquad \qquad = L_3 \tag{5}$$

其中微分算子 L_1, L_2, L_3 的表达式为

$$L_{1} = \frac{\partial}{\partial x} \left\{ 1 - \frac{k_{c}}{k_{d}} \frac{D}{C} \frac{\partial^{2}}{\partial y^{2}} \right\}$$

$$L_{2} = \frac{\partial}{\partial y} \left\{ 1 - \frac{k_{d}}{k_{c}} \frac{D}{C} \frac{\partial^{2}}{\partial x^{2}} \right\}$$

$$L_{3} = \left[1 - \frac{k_{d}}{k_{c}} \frac{D}{C} \frac{\partial^{2}}{\partial x^{2}} \right] \left\{ 1 - \frac{k_{c}}{k_{d}} \frac{D}{C} \frac{\partial^{2}}{\partial y^{2}} \right\}$$
(6)

式(6)中

$$C = \sqrt{C_x C_y} \qquad D = \sqrt{D_x D_y}$$

$$k_c = \sqrt{C_x C_y} \qquad k_d = \sqrt{D_x D_y}$$
(7)

由式(1)~(7)可推得正交正放类网架考虑剪切变形的拟夹层板的压曲方程为

$$DL_4 + \left(N_x \frac{\partial^2}{\partial x^2} + N_y \frac{\partial^2}{\partial y^2} + 2N_{xy} \frac{\partial^2}{\partial x \partial y}\right) L_3 = 0$$
 (8)

其中 L4 为微分算子,

$$L_4 = k_d \frac{\partial^4}{\partial x^4} + \frac{1}{k_d} \frac{\partial^4}{\partial y^4} - \frac{D}{C} \frac{\partial^4}{\partial x^2 \partial y^2} \left(k_c \frac{\partial^2}{\partial x^2} + \frac{1}{k_c} \frac{\partial^2}{\partial y^2} \right)$$
(9)

4 边界条件及压曲临界荷载

由于网架在平面内的刚度很大,所以整体网架结构的每一片墙体可看成矩形平面四边简支,边界条件为

$$x = 0, L$$
 时:
$$= 0 M_x = 0 Q_y = 0$$
 $y = 0, H$ 时:
$$= 0 M_y = 0 Q_x = 0$$
 (10)

^{*} 钱若军,李亚铃.网架结构(上).河海大学,1989

$$x = 0$$
, L 时:
$$= 0 \qquad \frac{\partial^2}{\partial x^2} = 0$$
 $y = 0$, H 时:
$$= 0 \qquad \frac{\partial^2}{\partial y^2} = 0$$

其中,第三条件自然满足,考虑上述条件,将位移函数 展开为三角级数:

$$= \sum_{m=1,3,\dots,n} \sum_{m=1,3,\dots} A_{mn} \cos \frac{m-x}{L} \cos \frac{m-y}{H}$$
 (11)

将式(11)代入式(8),并考虑到网架墙体仅受屋盖传来荷载作用,即 $N_x = N_{xy} = 0$,经运算求得

$$N_{y} = \frac{2D}{L^{2}} \frac{k_{d}m^{4} + \frac{1}{k_{d}} {}^{4} n^{4} + k_{c}p^{2} {}^{2} m^{4} n^{2} + \frac{1}{k_{c}}p^{2} {}^{4} m^{2} n^{4}}{{}^{2} n^{2} (1 + \frac{k_{d}}{k_{c}}p^{2} m^{2} + \frac{k_{c}}{k_{d}}p^{2} {}^{2} n^{2} + p^{4} {}^{2} m^{2} n^{2})}$$
(12)

其中

$$=\frac{L}{H}$$
 $p=\frac{L}{L}\sqrt{\frac{D}{C}}$

则平板网架用于竖向承重墙体的压曲临界荷载为

$$P_{cr} = f \frac{{}^{2}D}{L^{2}} = k \frac{{}^{2}D}{H^{2}} \tag{13}$$

其中

$$k = \frac{f}{2} = \frac{k_d m^4 + \frac{1}{k_d} {}^4 n^4 + k_c {}^2 p^2 m^4 n^2 + \frac{1}{k_c} p^2 {}^4 m^2 n^4}{{}^4 n^2 (1 + \frac{k_d}{k_c} p^2 m^2 + \frac{k_c}{k_d} p^2 {}^2 n^2 + p^4 {}^2 m^2 n^2)}$$
(14)

5 计算及分析

a. 对于一个具体的网架工程,将有关的数据代入公式(13),即可求得其压曲临界荷载的精确解. 将此临界荷载与施加于网架墙体的竖向设计荷载比较,并考虑适当的安全系数,即可判断出此墙体是否满足稳定条件. 下面给出一简单算例.

某 30 m ×30 m 正放四角锥网架墙体, 网格尺寸为 3 m ×3 m, 墙体厚 2 m; 弦杆截面面积外表层为 $A_{ax} = A_{ay} = 13.83 \,\mathrm{cm}^2$, 内表层为 $A_{bx} = A_{by} = 10.68 \,\mathrm{cm}^2$, 斜腹杆截面面积为 $A_{cx} = A_{cy} = 8.29 \,\mathrm{cm}^2$. 墙体周边按简支考虑,求其临界荷载 P_{cx} .

解:按题意,求有关系数:

$$\mu_x = \mu_y = \frac{A_{ax}}{A_{bx}} = \frac{13.82}{10.68} = 1.294$$

抗弯刚度

$$D_x = D_y = \frac{\mu_x E A_{bx} h^2}{(1 + \mu_x) S} = \frac{1.294 \times 2.1 \times 10^4 \times 10.68 \times 200^2}{(1 + 1.294) \times 300} = \frac{1.68 \times 10^7 \text{ (kN \cdot cm)}}{D = \sqrt{D_x D_y}} = 1.68 \times 10^7 \text{ (kN \cdot cm)}$$

$$K_d = \sqrt{D_x / D_y} = 1.0$$

斜腹杆长度

$$L_c = \sqrt{2^2 + (3 \times 0.707)^2} = 2.915 \text{ (m)}$$

 $\sin = \frac{2}{2.915} = 0.686 \qquad \cos = \frac{3 \times 0.707}{2.915} = 0.728$

剪切刚度

$$C_x = C_y = \sqrt{2} EA_c \sin^2 \cos / S =$$

 $\sqrt{2} \times 2.1 \times 10^4 \times 8.29 \times 0.686^2 \times 0.728/300 =$
 $3.02 \times 10^2 (kN \cdot cm)$

则

$$C = \sqrt{C_x C_y} = 3.02 \times 10^2 (\text{kN} \cdot \text{cm})$$

$$k_c = \sqrt{C_x / C_y} = 1.0$$

$$p = \frac{1}{L} \sqrt{\frac{D}{C}} = \frac{1.08 \times 10^7}{3000} = 0.25$$

$$= \frac{L}{H} = \frac{3000}{3000} = 1.0$$

代入式(14),即可求得

$$k = \frac{1 + 1 + 0.25^2 + 0.25^2}{1 + 0.25^2 + 0.25^2 + 0.25^4} = 1.882$$

则临界荷载为

$$P_{cr} = k \frac{^{2}D}{H^{2}} = 1.882 \times \frac{^{2} \times 1.68 \times 10^{7}}{3000^{2}} = 34.67 \text{ (kN/cm)}$$

可见,在一般情况下,网架结构的压曲临界荷载是足够大的.

b. 在压曲临界荷载系数 k 中,包含了四个参数,即墙体的长高比 = L/H,剪切刚度比 k $=\sqrt{C_*/C_*}$ 弯曲的刚度比 $k_*=\sqrt{D_*/D_*}$ 及描述前切变形的无量纲参数 $p_*=-\sqrt{D_*/C_*}$ 对于正

交正放类网架而言, $k_c = 1.0$, 其他三个参数的工程常见范围为 $= 1.0 \sim 1.4$, $k_d = 0.6 \sim 1.0$, p							
$= 0.0 \sim 0.5$. 本文的背景工程 ——某升船机机房为长 x跨 x高 = $120 \mathrm{m}$ x60 m x32 m 的整体网							
架结构,其网架墙体的长高比为 $= 2.0$ 及 $= 4.0$,超出常见参数范围,现对其系数 k 进行计							
算,结果列于表1中.							
表 1 压曲临界荷载系数计算成果							
常见工程							

常见工程				背景工程			
	p	k_d	k		p	k_d	k
1.0	0.0	0.6	2. 267	2.0	0.0	0.6	1.704
1.0		1.0	2.000			1.0	1.063
1.0	0.5	0.6	1.698	2.0	0.5	0.6	0.657
1.0		1.0	1.600			1.0	0.550
	0.0	0.6	1.823	4.0	0.0	0.6	1.669
1.4		1.0	1.260			1.0	1.004
1.4	0.5	0.6	1.053	4.0	0.5	0.6	0. 219
		1.0	0.879			1.0	0.203

对任意一个厚度、高度一定的竖向承重正交正放类网架墙体而言,从表中可分析出如下几点影响:

- (a) 剪切变形的影响. 考虑剪切变形(p 0.0) 将会使 k 值有较大幅度的减少,如 $k_d = 1.0$, = 4.0 时, p = 0.5 的 k 值仅为 p = 0.0 时的 20 %左右.
- (b) 长高比 的影响. 在 k_d , p 不变的情况下, 背景工程 = 4 时的 k 值仅为常规工程 = 1.4 时的 25.7%, 或 = 1.0 时的 14.5%. 这就是说, 墙体长高比越大, 压曲临界荷载 P_{cr} 越小, 且考虑剪切变形比不考虑剪切变形(p=0) 时的减幅要大.
- (c) 不等刚度比 k_d 对系数 k 的影响. 当不考虑剪切变形时, k_d 的变化对 k 值影响较大, 且影响幅度随 的增大而增大; 当 p=0.5 时, k_d 的变化对 k 值的影响较小. 如当 p=0.0, = 4.0 时, $k_d=0.6$ 时的 k 值与 $k_d=1.0$ 时的 k 值相差约 66%, 而同样情况下 p=0.5 时, 仅相差 8%.

6 结 语

- a. 本文用拟夹层板法,推导出了正交正放类网架用于竖向承重墙体的压曲方程,并求出了压曲临界荷载的精确解.
 - b. 剪切变形对压曲临界荷载的影响较大.
- c. 网架结构用于竖向承重墙体,一般平面尺寸较为特殊,随着墙体长高比的增大,压曲临界荷载将大幅度减小,工程应用时应给予足够的重视.

Stability Calculation of Vertical Space Truss Wall

Xu Chuanxi Ding Xiaotang Ni Jun

(College of Civil Engineering, Hohai Univ., Nanjing 210098)

Zhang Guangfu

(Designing Institute of Changjiang Water Conservancy Committee, Wuhan 430010)

Abstract The paper has studied the integral stability of the vertical space turss wall. With the pseudo-sandwich plate method ,taking the space truss wall as a plate which supports logntitudinal and lateral loads at the same time, buckle equations of the pseudo-sandwich have been derived. Boundary conditions introduced, the critical load of the space truss wall has been obtained.

Key words integral space truss structure; space truss wall; pseudo-sandwich plate method; buckle; critical load